Dynamical simulations of classical stochastic systems using matrix product states.

نویسندگان

  • T H Johnson
  • S R Clark
  • D Jaksch
چکیده

We adapt the time-evolving block decimation (TEBD) algorithm, originally devised to simulate the dynamics of one-dimensional quantum systems, to simulate the time evolution of nonequilibrium stochastic systems. We describe this method in detail; a system's probability distribution is represented by a matrix product state (MPS) of finite dimension and then its time evolution is efficiently simulated by repeatedly updating and approximately refactorizing this representation. We examine the use of MPS as an approximation method, looking at parallels between the interpretations of applying it to quantum state vectors and probability distributions. In the context of stochastic systems we consider two types of factorization for use in the TEBD algorithm: non-negative matrix factorization (NMF), which ensures that the approximate probability distribution is manifestly non-negative, and the singular value decomposition (SVD). Comparing these factorizations, we find the accuracy of the SVD to be substantially greater than current NMF algorithms. We then apply TEBD to simulate the totally asymmetric simple exclusion process (TASEP) for systems of up to hundreds of lattice sites in size. Using exact analytic results for the TASEP steady state, we find that TEBD reproduces this state such that the error in calculating expectation values can be made negligible even when severely compressing the description of the system by restricting the dimension of the MPS to be very small. Out of the steady state we show for specific observables that expectation values converge as the dimension of the MPS is increased to a moderate size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NORMAL FORM SOLUTION OF REDUCED ORDER OSCILLATING SYSTEMS

This paper describes a preliminary investigation into the use of normal form theory for modelling large non-linear dynamical systems. Limit cycle oscillations are determined for simple two-degree-of-freedom double pendulum systems. The double pendulum system is reduced into its centre manifold before computing normal forms. Normal forms are obtained using a period averaging method which is appl...

متن کامل

Composition of quantum states and dynamical subadditivity

We introduce a composition of quantum states of a bipartite system which is based on the reshuffling of density matrices. This non-Abelian product is associative and stems from the composition of quantum maps acting on a simple quantum system. It induces a semi-group in the subset of states with maximally mixed partial traces. Subadditivity of the von Neumann entropy with respect to this produc...

متن کامل

An estimator of the inverse covariance matrix and its application to ML parameter estimation in dynamical systems

An exact formula of the inverse covariance matrix of an autoregressive stochastic process is obtained using the Gohberg}Semencul explicit inverse of the Toeplitz matrix. This formula is used to build an estimator of the inverse covariance matrix of a stochastic process based on a single realization. In this paper, we show that this estimator can be conveniently applied to maximum likelihood par...

متن کامل

Dynamical ‎C‎ontrol of Computations Using the Family of Optimal Two-point Methods to Solve Nonlinear ‎Equations

One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration, and to use a proper termination criterion which is able to obtain a high accuracy for the numerical solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a new scheme based on the stochastic arithmetic to find the optimal number of iterations in...

متن کامل

ar X iv : q ua nt - p h / 05 03 24 1 v 1 3 1 M ar 2 00 5 Stochastic simulations of conditional states of partially observed systems , quantum and classical

In a partially observed quantum or classical system the information that we cannot access results in our description of the system becoming mixed even if we have perfect initial knowledge. That is, if the system is quantum the conditional state will be given by a state matrix ρr(t) and if classical the conditional state will be given by a probability distribution Pr(x, t) where r is the result ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010